The angular distributions of the rare decays B+ -> K+mu(+)mu(-) and B-0 -> K-S(0)mu(+)mu(-) are studied with data corresponding to 3 fb(-1) of integrated luminosity, collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies with the LHCb detector. The angular distribution is described by two parameters, F-H and the forward-backward asymmetry of the dimuon system A(FB), which are determined in bins of the dimuon mass squared. The parameter F-H is a measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width. The measurements of A(FB) and F-H reported here are the most precise to date and are compatible with predictions from the Standard Model.

Angular analysis of charged and neutral B -> K mu(+) mu(-) decays

CENCI, RICCARDO;MARINO, PIETRO;MORELLO, MICHAEL JOSEPH;
2014

Abstract

The angular distributions of the rare decays B+ -> K+mu(+)mu(-) and B-0 -> K-S(0)mu(+)mu(-) are studied with data corresponding to 3 fb(-1) of integrated luminosity, collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies with the LHCb detector. The angular distribution is described by two parameters, F-H and the forward-backward asymmetry of the dimuon system A(FB), which are determined in bins of the dimuon mass squared. The parameter F-H is a measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width. The measurements of A(FB) and F-H reported here are the most precise to date and are compatible with predictions from the Standard Model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/59577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 25
social impact