We discuss the partition function of the SO (8192 ) bosonic string at arbitrary genus. As in the genus-one case, diagrams defined in terms of involutions acting in the same way on the homology basis are weighted by identical multiplicity factors. This property emerges as the basic feature of the SO (8192 ) theory. It corresponds to the picture of this model as a parameter-space orbifold of the closed bosonic string. By factorization we recover amplitudes in the degenerate limit.

Group Theory from ``Quarks'' at the Ends of Strings (TOPCITE: 122 citazioni su INSPIRE HEP)

SAGNOTTI, AUGUSTO
1987

Abstract

We discuss the partition function of the SO (8192 ) bosonic string at arbitrary genus. As in the genus-one case, diagrams defined in terms of involutions acting in the same way on the homology basis are weighted by identical multiplicity factors. This property emerges as the basic feature of the SO (8192 ) theory. It corresponds to the picture of this model as a parameter-space orbifold of the closed bosonic string. By factorization we recover amplitudes in the degenerate limit.
1987
File in questo prodotto:
File Dimensione Formato  
quarks.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 723.93 kB
Formato Adobe PDF
723.93 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact