Intracellular antibodies or intrabodies (ICAbs) have great potential in protein knockout strategies for intracellular antigens. In this study, they have been used to investigate the role of the rotavirus non-structural protein NSP5 in the virus replication cycle. Intracellular antibody-capture technology was used to select single-chain Fv format (scFv) ICAbs against an NSP5 mutant. Five different specific ICAbs were selected and expressed in MA104 cells, in the scFv format, as cytoplasmic- and nuclear-tagged forms. By confocal microscopy, it was found that three of these ICAbs recognized the full-length wild-type NSP5 specifically, forming antigen-specific aggresomes in the cytoplasm of cotransfected cells. Expression of the ICAbs in rotavirus-infected cells largely reduced the assembly of viroplasms and cellular cytopathic effect. Replication of dsRNA was partially inhibited, despite there being no reduction in virus titre. These results demonstrate for the first time a key role for NSP5 during the virus replicative cycle.

Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle

CATTANEO, ANTONINO;
2004

Abstract

Intracellular antibodies or intrabodies (ICAbs) have great potential in protein knockout strategies for intracellular antigens. In this study, they have been used to investigate the role of the rotavirus non-structural protein NSP5 in the virus replication cycle. Intracellular antibody-capture technology was used to select single-chain Fv format (scFv) ICAbs against an NSP5 mutant. Five different specific ICAbs were selected and expressed in MA104 cells, in the scFv format, as cytoplasmic- and nuclear-tagged forms. By confocal microscopy, it was found that three of these ICAbs recognized the full-length wild-type NSP5 specifically, forming antigen-specific aggresomes in the cytoplasm of cotransfected cells. Expression of the ICAbs in rotavirus-infected cells largely reduced the assembly of viroplasms and cellular cytopathic effect. Replication of dsRNA was partially inhibited, despite there being no reduction in virus titre. These results demonstrate for the first time a key role for NSP5 during the virus replicative cycle.
2004
File in questo prodotto:
File Dimensione Formato  
Vascotto Cattaneo J Gen Virol 2004.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 682.89 kB
Formato Adobe PDF
682.89 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 52
social impact