First we study in detail the tensorization properties of weak gradients in metric measure spaces (X,d,m). Then, we compare potentially different notions of the Sobolev space H1,1(X,d,m) and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional with the perimeter of the subgraph of f, in the same spirit as the classical theory.

Tensorization of Cheeger energies, the space $H^1,1$ and the area formula for graphs

AMBROSIO, Luigi;PINAMONTI, ANDREA;SPEIGHT, GARETH JAMES
2015

Abstract

First we study in detail the tensorization properties of weak gradients in metric measure spaces (X,d,m). Then, we compare potentially different notions of the Sobolev space H1,1(X,d,m) and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional with the perimeter of the subgraph of f, in the same spirit as the classical theory.
2015
Settore MAT/05 - Analisi Matematica
Area formula; Metric measure spaces; Sobolev spaces; Tensorization;
File in questo prodotto:
File Dimensione Formato  
Cheeger_Tensorization_published.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 583.84 kB
Formato Adobe PDF
583.84 kB Adobe PDF   Richiedi una copia
Stampa_Richiesta_Missione.pdf

Open Access dal 21/08/2017

Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 78.64 kB
Formato Adobe PDF
78.64 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/60322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
  • OpenAlex ND
social impact