First we study in detail the tensorization properties of weak gradients in metric measure spaces (X,d,m). Then, we compare potentially different notions of the Sobolev space H1,1(X,d,m) and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional with the perimeter of the subgraph of f, in the same spirit as the classical theory.
Tensorization of Cheeger energies, the space $H^1,1$ and the area formula for graphs
AMBROSIO, Luigi;PINAMONTI, ANDREA;SPEIGHT, GARETH JAMES
2015
Abstract
First we study in detail the tensorization properties of weak gradients in metric measure spaces (X,d,m). Then, we compare potentially different notions of the Sobolev space H1,1(X,d,m) and of weak gradient with exponent 1. Eventually we apply these results to compare the area functional with the perimeter of the subgraph of f, in the same spirit as the classical theory.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cheeger_Tensorization_published.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
583.84 kB
Formato
Adobe PDF
|
583.84 kB | Adobe PDF | Richiedi una copia |
Stampa_Richiesta_Missione.pdf
Open Access dal 21/08/2017
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
78.64 kB
Formato
Adobe PDF
|
78.64 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.