In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
Some fine properties of $BV$ functions on Wiener spaces
Ambrosio, Luigi;
2015
Abstract
In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fineproperties.pdf
accesso aperto
Descrizione: Preprint sottomesso per la pubblicazione
Tipologia:
Submitted version (pre-print)
Licenza:
Creative Commons
Dimensione
393.23 kB
Formato
Adobe PDF
|
393.23 kB | Adobe PDF | |
Wiener-Spaces.pdf
accesso aperto
Descrizione: journal article full text
Tipologia:
Published version
Licenza:
Creative Commons
Dimensione
406.18 kB
Formato
Adobe PDF
|
406.18 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.