In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

Some fine properties of $BV$ functions on Wiener spaces

Ambrosio, Luigi;
2015

Abstract

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
Settore MAT/05 - Analisi Matematica
Fondi MUR
Calcolo delle Variazioni
File in questo prodotto:
File Dimensione Formato  
fineproperties.pdf

accesso aperto

Descrizione: Preprint sottomesso per la pubblicazione
Tipologia: Submitted version (pre-print)
Licenza: Creative commons
Dimensione 393.23 kB
Formato Adobe PDF
393.23 kB Adobe PDF Visualizza/Apri
Wiener-Spaces.pdf

accesso aperto

Descrizione: journal article full text
Tipologia: Published version
Licenza: Creative commons
Dimensione 406.18 kB
Formato Adobe PDF
406.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/60340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact