Many-body states whose wave functions admit a representation in terms of a uniform binary-tree tensor decomposition are shown to obey power-law two-body correlation functions. Any such state can be associated with the ground state of a translationally invariant Hamiltonian which, depending on the dimension of the systems sites, involves at most couplings between third-neighboring sites. Under general conditions it is shown that they describe unfrustrated systems which admit an exponentially large degeneracy of the ground state.

Homogeneous binary trees as ground states of quantum critical Hamiltonians

GIOVANNETTI, VITTORIO;FAZIO, ROSARIO
2010

Abstract

Many-body states whose wave functions admit a representation in terms of a uniform binary-tree tensor decomposition are shown to obey power-law two-body correlation functions. Any such state can be associated with the ground state of a translationally invariant Hamiltonian which, depending on the dimension of the systems sites, involves at most couplings between third-neighboring sites. Under general conditions it is shown that they describe unfrustrated systems which admit an exponentially large degeneracy of the ground state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact