Recent observations have gathered a considerable sample of high-redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5 < z < 10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, α≈-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z= 5 (z= 7-8), implying an early (z > 9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (?) show metallicities ≈0.1 Zsun even at z= 7-8. Most of the simulated galaxies at z≈ 7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50 per cent) of the ionizing photons is produced by objects populating the faint end of the LF (?), which JWST will resolve up to z= 7.3. Pop III stars continue to form essentially at all redshifts; however, at z= 6 (z= 10) the contribution of Pop III stars to the total galactic luminosity is always less than 5 per cent for ? (?). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.

Simulating high-redshift galaxies

FERRARA, ANDREA;
2011

Abstract

Recent observations have gathered a considerable sample of high-redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5 < z < 10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, α≈-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z= 5 (z= 7-8), implying an early (z > 9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (?) show metallicities ≈0.1 Zsun even at z= 7-8. Most of the simulated galaxies at z≈ 7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50 per cent) of the ionizing photons is produced by objects populating the faint end of the LF (?), which JWST will resolve up to z= 7.3. Pop III stars continue to form essentially at all redshifts; however, at z= 6 (z= 10) the contribution of Pop III stars to the total galactic luminosity is always less than 5 per cent for ? (?). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.
File in questo prodotto:
File Dimensione Formato  
1003.3873v3.pdf

accesso aperto

Descrizione: post-print article full text
Tipologia: Altro materiale allegato
Licenza: Solo Lettura
Dimensione 870.14 kB
Formato Adobe PDF
870.14 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6151
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 116
  • ???jsp.display-item.citation.isi??? 110
  • OpenAlex ND
social impact