We prove higher summability and regularity of Gamma(f) for functions f in spaces satisfying the Bakry–Émery condition BE(K,∞). As a byproduct, we obtain various equivalent weak formulations of BE( K , N ) and we prove the Local-to-Global property of the RCD∗(K, N) condition in locally compact metric measure spaces (X, d, m), without assuming a priori the non-branching condition on the metric space.
On the Bakry–Émery Condition, the Gradient Estimates and the Local-to-Global Property of RCD∗(K, N) Metric Measure Spaces
AMBROSIO, Luigi;MONDINO, ANDREA;SAVARE', GIUSEPPE
2016
Abstract
We prove higher summability and regularity of Gamma(f) for functions f in spaces satisfying the Bakry–Émery condition BE(K,∞). As a byproduct, we obtain various equivalent weak formulations of BE( K , N ) and we prove the Local-to-Global property of the RCD∗(K, N) condition in locally compact metric measure spaces (X, d, m), without assuming a priori the non-branching condition on the metric space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ambrosio_Mondino_Savare_offprint.pdf
solo utenti autorizzati
Descrizione: e-offprint del lavoro
Tipologia:
Accepted version (post-print)
Licenza:
Non pubblico
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Richiedi una copia |
LocalToGlobalFinal.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Solo Lettura
Dimensione
459.77 kB
Formato
Adobe PDF
|
459.77 kB | Adobe PDF | |
Ambrosio2016_Article_OnTheBakryÉmeryConditionTheGra-1.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
507.64 kB
Formato
Adobe PDF
|
507.64 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.