We prove higher summability and regularity of Gamma(f) for functions f in spaces satisfying the Bakry–Émery condition BE(K,∞). As a byproduct, we obtain various equivalent weak formulations of BE( K , N ) and we prove the Local-to-Global property of the RCD∗(K, N) condition in locally compact metric measure spaces (X, d, m), without assuming a priori the non-branching condition on the metric space.

On the Bakry–Émery Condition, the Gradient Estimates and the Local-to-Global Property of RCD∗(K, N) Metric Measure Spaces

AMBROSIO, Luigi;MONDINO, ANDREA;SAVARE', GIUSEPPE
2016

Abstract

We prove higher summability and regularity of Gamma(f) for functions f in spaces satisfying the Bakry–Émery condition BE(K,∞). As a byproduct, we obtain various equivalent weak formulations of BE( K , N ) and we prove the Local-to-Global property of the RCD∗(K, N) condition in locally compact metric measure spaces (X, d, m), without assuming a priori the non-branching condition on the metric space.
2016
Settore MAT/05 - Analisi Matematica
Optimal Transport; Bakry-Emery condition; Gamma-calculus; Bakry–Émery curvature bounds; Dirichlet forms; CD (K,N) spaces
File in questo prodotto:
File Dimensione Formato  
Ambrosio_Mondino_Savare_offprint.pdf

solo utenti autorizzati

Descrizione: e-offprint del lavoro
Tipologia: Accepted version (post-print)
Licenza: Non pubblico
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Richiedi una copia
LocalToGlobalFinal.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 459.77 kB
Formato Adobe PDF
459.77 kB Adobe PDF
Ambrosio2016_Article_OnTheBakryÉmeryConditionTheGra-1.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 507.64 kB
Formato Adobe PDF
507.64 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/63334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 55
  • OpenAlex ND
social impact