Synthetic ladders realized with one-dimensional alkaline-earth(-like) fermionic gases and subject to a gauge field represent a promising environment for the investigation of quantum Hall physics with ultracold atoms. Using density-matrix renormalization group calculations, we study how the quantum Hall-like chiral edge currents are affected by repulsive atom-atom interactions. We relate the properties of such currents to the asymmetry of the spin resolved momentum distribution function, a quantity which is easily addressable in state-of-art experiments. We show that repulsive interactions significantly stabilize the quantum Hall-like helical region and enhance the chiral currents. Our numerical simulations are performed for atoms with two and three internal spin states.

Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes

BARBARINO, SIMONE;ROSSINI, DAVIDE;MAZZA, LEONARDO;FAZIO, ROSARIO
2016

Abstract

Synthetic ladders realized with one-dimensional alkaline-earth(-like) fermionic gases and subject to a gauge field represent a promising environment for the investigation of quantum Hall physics with ultracold atoms. Using density-matrix renormalization group calculations, we study how the quantum Hall-like chiral edge currents are affected by repulsive atom-atom interactions. We relate the properties of such currents to the asymmetry of the spin resolved momentum distribution function, a quantity which is easily addressable in state-of-art experiments. We show that repulsive interactions significantly stabilize the quantum Hall-like helical region and enhance the chiral currents. Our numerical simulations are performed for atoms with two and three internal spin states.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/63381
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
social impact