We propose a methodology, based on the combination of classical Molecular Dynamics (MD) simulations with a fully polarizable Quantum Mechanical (QM)/Molecular Mechanics (MM)/Polarizable Continuum Model (PCM) Hamiltonian to calculate Vibrational Circular Dichroism (VCD) spectra of chiral systems in aqueous solution. Polarization effects are included in the MM force field by exploiting an approach based on Fluctuating Charges (FQ). By performing the MD, the description of the solvating environment is enriched by taking into account the dynamical aspects of the solute-solvent interactions. On the other hand, the QM/FQ/PCM calculation of the VCD spectrum ensures an accurate description of the electronic density of the solute and a proper account for the specific interactions in solution. The application of our approach to (R)-methyloxirane and L-alanine in aqueous solution gives calculated spectra in remarkable agreement with their experimental counterparts, and a substantial improvement with respect to the same spectra calculated with the PCM.

An Effective Fully Polarizable QM/MM Approach to Model Vibrational Circular Dichroism Spectra of Systems in Aqueous Solutions

GIOVANNINI, TOMMASO;CAPPELLI, Chiara
2016

Abstract

We propose a methodology, based on the combination of classical Molecular Dynamics (MD) simulations with a fully polarizable Quantum Mechanical (QM)/Molecular Mechanics (MM)/Polarizable Continuum Model (PCM) Hamiltonian to calculate Vibrational Circular Dichroism (VCD) spectra of chiral systems in aqueous solution. Polarization effects are included in the MM force field by exploiting an approach based on Fluctuating Charges (FQ). By performing the MD, the description of the solvating environment is enriched by taking into account the dynamical aspects of the solute-solvent interactions. On the other hand, the QM/FQ/PCM calculation of the VCD spectrum ensures an accurate description of the electronic density of the solute and a proper account for the specific interactions in solution. The application of our approach to (R)-methyloxirane and L-alanine in aqueous solution gives calculated spectra in remarkable agreement with their experimental counterparts, and a substantial improvement with respect to the same spectra calculated with the PCM.
2016
Settore CHIM/02 - Chimica Fisica
QM/MM, polarization, solvent effect, VCD, dichroism
File in questo prodotto:
File Dimensione Formato  
acs.jctc.6b00768.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Richiedi una copia
revised.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/63801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact