This paper surveys some recent results on Toda systems of Liouville equations. These systems model self-dual non-abelian Chern-Simons vortices, and arise in the study of holomorphic curves. Suitable min-max schemes are employed, leading to existence of solutions in several situations. We will use in particular properties about concentration of exponential functions in order to describe low-energy levels of the Euler-Lagrange energy.

Min-max schemes for SU(3) Toda systems

MALCHIODI, ANDREA
2017

Abstract

This paper surveys some recent results on Toda systems of Liouville equations. These systems model self-dual non-abelian Chern-Simons vortices, and arise in the study of holomorphic curves. Suitable min-max schemes are employed, leading to existence of solutions in several situations. We will use in particular properties about concentration of exponential functions in order to describe low-energy levels of the Euler-Lagrange energy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/64424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact