We report the realization of a hybrid superconductor-quantum dot device by means of top-down nanofabrication starting from a two-dimensional electron gas in a InGaAs/InAlAs semiconductor heterostructure. The quantum dot is defined by electrostatic gates placed within the normal region of a planar Nb-InGaAs quantum well-Nb junction. Measurements in the regime of strong Coulomb blockade as well as cotunneling spectroscopy allow to directly probe the proximity-induced energy gap in a ballistic two-dimensional electron gas coupled to superconductors.

Quantum dot spectroscopy of proximity-induced superconductivity in a two-dimensional electron gas

BELTRAM, Fabio
2011

Abstract

We report the realization of a hybrid superconductor-quantum dot device by means of top-down nanofabrication starting from a two-dimensional electron gas in a InGaAs/InAlAs semiconductor heterostructure. The quantum dot is defined by electrostatic gates placed within the normal region of a planar Nb-InGaAs quantum well-Nb junction. Measurements in the regime of strong Coulomb blockade as well as cotunneling spectroscopy allow to directly probe the proximity-induced energy gap in a ballistic two-dimensional electron gas coupled to superconductors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact