One of the characteristics of Alzheimer's disease (AD) that hinders the discovery of effective disease-modifying therapies is the multifactorial nature of its etiopathology. To circumvent this drawback, the use of multi-target-directed ligands (MTDLs) has recently been proposed as a means of simultaneously hitting several targets involved in the development of the AD syndrome. In this paper, a new class of MTDLs based on a polyamine-quinone skeleton, whose lead (memoquin, 2) showed promising properties in preclinical investigations (Cavalli et al. Angew. Chem., Int. Ed. 2007, 46, 3689-3692), is described. 3-29 were tested in vitro against a number of isolated AD-related targets, namely, AChE and BChE, and Abeta aggregation (both AChE-mediated and self-induced). Furthermore, the ability of the compounds to counteract the oxidative stress in a human neuronal-like cellular system (SH-SY5Y cells) was assayed, in both the presence and absence of NQO1, an enzyme able to generate and maintain the reduced form of quinone.
Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer's disease.
CATTANEO, ANTONINO;
2007
Abstract
One of the characteristics of Alzheimer's disease (AD) that hinders the discovery of effective disease-modifying therapies is the multifactorial nature of its etiopathology. To circumvent this drawback, the use of multi-target-directed ligands (MTDLs) has recently been proposed as a means of simultaneously hitting several targets involved in the development of the AD syndrome. In this paper, a new class of MTDLs based on a polyamine-quinone skeleton, whose lead (memoquin, 2) showed promising properties in preclinical investigations (Cavalli et al. Angew. Chem., Int. Ed. 2007, 46, 3689-3692), is described. 3-29 were tested in vitro against a number of isolated AD-related targets, namely, AChE and BChE, and Abeta aggregation (both AChE-mediated and self-induced). Furthermore, the ability of the compounds to counteract the oxidative stress in a human neuronal-like cellular system (SH-SY5Y cells) was assayed, in both the presence and absence of NQO1, an enzyme able to generate and maintain the reduced form of quinone.File | Dimensione | Formato | |
---|---|---|---|
Bolognesi Cattaneo J Med Chem 2007.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
424.26 kB
Formato
Adobe PDF
|
424.26 kB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.