We investigate the evolution of the metallicity of the intergalactic medium (IGM) with particular emphasis on its spatial distribution. We propose that metal enrichment occurs as a two-step process. First, supernova (SN) explosions eject metals into relatively small regions confined to the surroundings of star-forming galaxies. From a comprehensive treatment of blowout we show that SN by themselves fail by more than one order of magnitude to distribute the products of stellar nucleosynthesis over volumes large enough to pollute the whole IGM to the metallicity levels observed. Thus, an additional (but as yet unknown) physical mechanism must be invoked to mix the metals on scales comparable to the mean distance between the galaxies that are most efficient pollutants. From this simple hypothesis we derive a number of testable predictions for the evolution of the IGM metallicity. Specifically, we find that: (i) the fraction of metals ejected over the star-formation history of the Universe is about 50 per cent at graphic that is, approximately half of the metals today are found in the IGM; (ii) if the ejected metals were homogeneously mixed with the baryons in the Universe, the average IGM metallicity would be graphic at graphic However, due to spatial inhomogeneities, the mean of the distribution of metallicities in the diffusive zones has a wide (more than 2 orders of magnitude) spread around this value; (iii) if metals become more uniformly distributed at graphic as assumed, at graphic the metallicity of the IGM is narrowly confined within the range graphic Finally, we point out that our results can account for the observed metal content of the intracluster medium.

Mixing Metals in the Early Universe

FERRARA, ANDREA;
2000

Abstract

We investigate the evolution of the metallicity of the intergalactic medium (IGM) with particular emphasis on its spatial distribution. We propose that metal enrichment occurs as a two-step process. First, supernova (SN) explosions eject metals into relatively small regions confined to the surroundings of star-forming galaxies. From a comprehensive treatment of blowout we show that SN by themselves fail by more than one order of magnitude to distribute the products of stellar nucleosynthesis over volumes large enough to pollute the whole IGM to the metallicity levels observed. Thus, an additional (but as yet unknown) physical mechanism must be invoked to mix the metals on scales comparable to the mean distance between the galaxies that are most efficient pollutants. From this simple hypothesis we derive a number of testable predictions for the evolution of the IGM metallicity. Specifically, we find that: (i) the fraction of metals ejected over the star-formation history of the Universe is about 50 per cent at graphic that is, approximately half of the metals today are found in the IGM; (ii) if the ejected metals were homogeneously mixed with the baryons in the Universe, the average IGM metallicity would be graphic at graphic However, due to spatial inhomogeneities, the mean of the distribution of metallicities in the diffusive zones has a wide (more than 2 orders of magnitude) spread around this value; (iii) if metals become more uniformly distributed at graphic as assumed, at graphic the metallicity of the IGM is narrowly confined within the range graphic Finally, we point out that our results can account for the observed metal content of the intracluster medium.
2000
Settore FIS/05 - Astronomia e Astrofisica
Settore PHYS-05/A - Astrofisica, cosmologia e scienza dello spazio
intergalactic medium; quasars: absorption lines; cosmology: theory
File in questo prodotto:
File Dimensione Formato  
319-2-539.pdf

accesso aperto

Tipologia: Published version
Licenza: Licenza OA dell'editore
Dimensione 414.1 kB
Formato Adobe PDF
414.1 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 136
  • OpenAlex ND
social impact