We present one of the first resolved maps of the [CII] 158 micron line, a powerful tracer of the star forming inter-stellar medium, at high redshift. We use the new IRAM PdBI receivers at 350 GHz to map this line in BRI 0952-0115, the host galaxy of a lensed quasar at z=4.4 previously found to be very bright in [CII] emission. The [CII] emission is clearly resolved and our data allow us to resolve two [CII] lensed images associated with the optical quasar images. We find that the star formation, as traced by [CII], is distributed over a region of ~ 1 kpc in size near the quasar nucleus, and we infer a star formation surface density >150 Msun/yr/kpc^2, similar to that observed in local ULIRGs. We also reveal another [CII] component, extended over ~ 12 kpc, and located at ~ 10 kpc from the quasar. We suggest that this component is a companion disk galaxy, in the process of merging with the quasar host, whose rotation field is distorted by the interaction with the quasar host, and where star formation, although intense, is more diffuse. These observations suggest that galaxy merging at high-z can enhance star formation at the same time in the form of more compact regions, in the vicinity of the accreting black hole, and in more extended star forming galaxies.

Resolved [CII] emission in a lensed quasar atz= 4.4

GALLERANI, SIMONA;MAIOLINO, Roberto;
2012

Abstract

We present one of the first resolved maps of the [CII] 158 micron line, a powerful tracer of the star forming inter-stellar medium, at high redshift. We use the new IRAM PdBI receivers at 350 GHz to map this line in BRI 0952-0115, the host galaxy of a lensed quasar at z=4.4 previously found to be very bright in [CII] emission. The [CII] emission is clearly resolved and our data allow us to resolve two [CII] lensed images associated with the optical quasar images. We find that the star formation, as traced by [CII], is distributed over a region of ~ 1 kpc in size near the quasar nucleus, and we infer a star formation surface density >150 Msun/yr/kpc^2, similar to that observed in local ULIRGs. We also reveal another [CII] component, extended over ~ 12 kpc, and located at ~ 10 kpc from the quasar. We suggest that this component is a companion disk galaxy, in the process of merging with the quasar host, whose rotation field is distorted by the interaction with the quasar host, and where star formation, although intense, is more diffuse. These observations suggest that galaxy merging at high-z can enhance star formation at the same time in the form of more compact regions, in the vicinity of the accreting black hole, and in more extended star forming galaxies.
2012
astro-ph.CO; astro-ph.CO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66000
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact