The v4 fundamental band of CF379Br and CF381Br, present in natural isotopic abundance, was investigated in the 8.3-m region by high-resolution infrared spectroscopic techniques. Tuneable diode laser spectra were recorded in the ranges 1202.5-1205.0 cm-1, 1208.0-1210.1 cm-1 and 1212.5-1214.5 cm-1. The tuneable diode laser spectra were obtained at the reduced temperature of 200 K and in a free-jet expansion. The latter technique was used to reduce spectral congestion, achieving a rotational temperature of about 50 K, with a resolution up to 0.0008 cm-1. A Fourier transform infrared spectrum covering the entire spectral region of the v4 band, between 1190 and 1220 cm-1, was recorded at 298 K with a resolution of 0.004 cm-1. The experimental wavenumbers from the different spectroscopic techniques were combined to accomplish the complete ro-vibrational analysis of v4. In total, 4651 transitions were assigned to CF3 79Br, 4047 to CF381Br, with J″max = K″max =80; of these, 3171 for CF 379Br and 2755 for CF381Br are from diode laser measurements. The data of each isotopologue were analysed using the model Hamiltonian for a degenerate vibrational state of a molecule of C 3v symmetry. The v4 band of both the isotopologues resulted essentially unperturbed, but the Δl = Δk = ±2 l-resonance was found to be active within the v4 = 1 state. Precise values of the vibrational energy and of the ro-vibrational parameters of v4 = 1 for CF379Br and CF3 81Br were obtained. The bromine isotopic splitting amounts to 6.9 × 10-3 cm-1. In addition, the equilibrium geometry and the harmonic force field were calculated ab initio using the large-size basis set def2-QZVP in conjunction to the PBE0 functional.

The ro-vibrational analysis of thev4fundamental band of CF3Br from jet-cooled diode laser and FTIR spectra in the 8.3-μm region

TASINATO, Nicola;
2014

Abstract

The v4 fundamental band of CF379Br and CF381Br, present in natural isotopic abundance, was investigated in the 8.3-m region by high-resolution infrared spectroscopic techniques. Tuneable diode laser spectra were recorded in the ranges 1202.5-1205.0 cm-1, 1208.0-1210.1 cm-1 and 1212.5-1214.5 cm-1. The tuneable diode laser spectra were obtained at the reduced temperature of 200 K and in a free-jet expansion. The latter technique was used to reduce spectral congestion, achieving a rotational temperature of about 50 K, with a resolution up to 0.0008 cm-1. A Fourier transform infrared spectrum covering the entire spectral region of the v4 band, between 1190 and 1220 cm-1, was recorded at 298 K with a resolution of 0.004 cm-1. The experimental wavenumbers from the different spectroscopic techniques were combined to accomplish the complete ro-vibrational analysis of v4. In total, 4651 transitions were assigned to CF3 79Br, 4047 to CF381Br, with J″max = K″max =80; of these, 3171 for CF 379Br and 2755 for CF381Br are from diode laser measurements. The data of each isotopologue were analysed using the model Hamiltonian for a degenerate vibrational state of a molecule of C 3v symmetry. The v4 band of both the isotopologues resulted essentially unperturbed, but the Δl = Δk = ±2 l-resonance was found to be active within the v4 = 1 state. Precise values of the vibrational energy and of the ro-vibrational parameters of v4 = 1 for CF379Br and CF3 81Br were obtained. The bromine isotopic splitting amounts to 6.9 × 10-3 cm-1. In addition, the equilibrium geometry and the harmonic force field were calculated ab initio using the large-size basis set def2-QZVP in conjunction to the PBE0 functional.
Halon 1301; infrared spectroscopy; jet-cooled diode laser spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/66176
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact