Claim of dust extinction for this GRB has been debated in the past. We suggest that the discrepant results occur primarily because most of previous studies have not simultaneously investigated the X-ray to near-IR spectral energy distribution of this GRB. The difficulty with this burst is that the X-ray afterglow is dominated by strong flares at early times and is poorly monitored at late times. In addition, the Z band photometry, which is the most sensitive to dust extinction, has been found to be affected by strong systematics. In this paper we carefully re-analyze the Swift/XRT afterglow observations of this GRB, using extensive past studies of X-ray flare properties when computing the X-ray afterglow flux level and exploiting the recent reanalysis of the optical (UV rest frame) data of the same GRB. We extract the X-ray to optical/near-IR afterglow SED for the three epochs where the best spectral coverage is available: 0.47, 1.25, and 3.4 days after the trigger. A spectral power-law model has been fitted to the extracted SEDs. We discuss that no spectral breaks or chromatic temporal breaks are expected in the epochs of interest. To fit any UV rest-frame dust absorption, we tested the Small Magellanic Cloud (SMC) extinction curve, the mean extinction curve (MEC) found for a sample of QSO at $z>4$ and its corresponding attenuation curve, as well as a starburst attenuation curve, and the extinction curve consistent with a supernova dust origin (SN-type). The SMC extinction curve and the SN-type one provide good fit to the data at all epochs, with an average amount of dust absorption at $lambda_rest = 3000 AA$ of $A_3000 = 0.25pm 0.07$ mag. These results indicate that the primeval galaxy at $z = 6.3$ hosting this GRB has already enriched its ISM with dust.

Is GRB 050904 at z = 6.3 absorbed by dust?

GALLERANI, SIMONA;MAIOLINO, Roberto
2011

Abstract

Claim of dust extinction for this GRB has been debated in the past. We suggest that the discrepant results occur primarily because most of previous studies have not simultaneously investigated the X-ray to near-IR spectral energy distribution of this GRB. The difficulty with this burst is that the X-ray afterglow is dominated by strong flares at early times and is poorly monitored at late times. In addition, the Z band photometry, which is the most sensitive to dust extinction, has been found to be affected by strong systematics. In this paper we carefully re-analyze the Swift/XRT afterglow observations of this GRB, using extensive past studies of X-ray flare properties when computing the X-ray afterglow flux level and exploiting the recent reanalysis of the optical (UV rest frame) data of the same GRB. We extract the X-ray to optical/near-IR afterglow SED for the three epochs where the best spectral coverage is available: 0.47, 1.25, and 3.4 days after the trigger. A spectral power-law model has been fitted to the extracted SEDs. We discuss that no spectral breaks or chromatic temporal breaks are expected in the epochs of interest. To fit any UV rest-frame dust absorption, we tested the Small Magellanic Cloud (SMC) extinction curve, the mean extinction curve (MEC) found for a sample of QSO at $z>4$ and its corresponding attenuation curve, as well as a starburst attenuation curve, and the extinction curve consistent with a supernova dust origin (SN-type). The SMC extinction curve and the SN-type one provide good fit to the data at all epochs, with an average amount of dust absorption at $lambda_rest = 3000 AA$ of $A_3000 = 0.25pm 0.07$ mag. These results indicate that the primeval galaxy at $z = 6.3$ hosting this GRB has already enriched its ISM with dust.
2011
Settore FIS/05 - Astronomia e Astrofisica
astro-ph.CO; astro-ph.CO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact