We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.

Critical dynamical properties of a first-order dissipative phase transition

FAZIO, ROSARIO;CIUTI, CRISTIANO
2017

Abstract

We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum solution describes a first-order phase transition in the regime where semiclassical theory predicts optical bistability. We study the behavior of the complex spectral gap associated with the Liouvillian superoperator of the corresponding master equation. We show that in this limit the Liouvillian gap vanishes exponentially and that the bimodality of the photon Wigner function disappears. The connection between the considered thermodynamical limit of large photon numbers for the single-mode cavity and the thermodynamical limit of many cavities for a driven-dissipative Bose-Hubbard system is discussed.
2017
Settore FIS/03 - Fisica della Materia
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
File in questo prodotto:
File Dimensione Formato  
PhysRevA.95.012128.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 465.12 kB
Formato Adobe PDF
465.12 kB Adobe PDF   Richiedi una copia
1608.00717v2.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Non specificata
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 145
  • OpenAlex 171
social impact