We study the multipartite entanglement of a quantum many-body system undergoing a quantum quench. We quantify the multipartite entanglement through the quantum Fisher information (QFI) density, and we are able to express it after a quench in terms of a generalised response function. For pure state initial conditions and in the thermodynamic limit, we can express the QFI as the fluctuations of an observable computed in the so-called diagonal ensemble. We apply the formalism to the dynamics of a quantum Ising chain, after a quench in the transverse field. In this model the asymptotic state is, in almost all cases, more than two-partite entangled. Moreover, starting from the ferromagnetic phase, we find a divergence of multipartite entanglement for small quenches closely connected to a corresponding divergence of the correlation length.

Multipartite entanglement after a quantum quench

RUSSOMANNO, ANGELO;SILVA, ALESSANDRO;FAZIO, ROSARIO
2017

Abstract

We study the multipartite entanglement of a quantum many-body system undergoing a quantum quench. We quantify the multipartite entanglement through the quantum Fisher information (QFI) density, and we are able to express it after a quench in terms of a generalised response function. For pure state initial conditions and in the thermodynamic limit, we can express the QFI as the fluctuations of an observable computed in the so-called diagonal ensemble. We apply the formalism to the dynamics of a quantum Ising chain, after a quench in the transverse field. In this model the asymptotic state is, in almost all cases, more than two-partite entangled. Moreover, starting from the ferromagnetic phase, we find a divergence of multipartite entanglement for small quenches closely connected to a corresponding divergence of the correlation length.
2017
Settore FIS/03 - Fisica della Materia
Settore PHYS-03/A - Fisica sperimentale della materia e applicazioni
entanglement in extended quantum systems; generalised Gibbs ensemble; quantum quenches
File in questo prodotto:
File Dimensione Formato  
Pappalardi_2017_J._Stat._Mech._2017_053104.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF   Richiedi una copia
1701.05883v2.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Non specificata
Dimensione 871.11 kB
Formato Adobe PDF
871.11 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66827
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 32
  • OpenAlex 35
social impact