In Parkinson's disease (PD) and other α-synucleinopathies, prefibrillar α-synuclein (αS) oligomer is implicated in the pathogenesis. However, toxic αS oligomers observed using in vitro systems are not generally seen to be associated with α-synucleinopathy in vivo. Thus, the pathologic significance of αS oligomers to αS neurotoxicity is unknown. Herein, we show that, αS that accumulate within endoplasmic reticulum (ER)/microsome forms toxic oligomers in mouse and human brain with the α-synucleinopathy. In the mouse model of α-synucleinopathy, αS oligomers initially form before the onset of disease and continue to accumulate with the disease progression. Significantly, treatment of αS transgenic mice with Salubrinal, an anti-ER stress compound that delays the onset of disease, reduces ER accumulation of αS oligomers. These results indicate that αS oligomers with toxic conformation accumulate in ER, and αS oligomer-dependent ER stress is pathologically relevant for PD.

Toxic alpha-synuclein oligomer accumulation and endoplasmic reticulum stress is mechanistically linked to alpha-synucleinopathy in vivo

Colla, Emanuela;
2012

Abstract

In Parkinson's disease (PD) and other α-synucleinopathies, prefibrillar α-synuclein (αS) oligomer is implicated in the pathogenesis. However, toxic αS oligomers observed using in vitro systems are not generally seen to be associated with α-synucleinopathy in vivo. Thus, the pathologic significance of αS oligomers to αS neurotoxicity is unknown. Herein, we show that, αS that accumulate within endoplasmic reticulum (ER)/microsome forms toxic oligomers in mouse and human brain with the α-synucleinopathy. In the mouse model of α-synucleinopathy, αS oligomers initially form before the onset of disease and continue to accumulate with the disease progression. Significantly, treatment of αS transgenic mice with Salubrinal, an anti-ER stress compound that delays the onset of disease, reduces ER accumulation of αS oligomers. These results indicate that αS oligomers with toxic conformation accumulate in ER, and αS oligomer-dependent ER stress is pathologically relevant for PD.
2012
Settore BIO/11 - Biologia Molecolare
Settore BIO/10 - Biochimica
Settore BIO/09 - Fisiologia
File in questo prodotto:
File Dimensione Formato  
2012-abstracts.pdf

accesso aperto

Descrizione: Abstract n.66
Tipologia: Published version
Licenza: Creative Commons
Dimensione 9.55 MB
Formato Adobe PDF
9.55 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/66904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact