The characteristic polynomial P_A(x_0, . . . , x_r) of an r-tuple A := (A_1, . . ., A_r) of n imes n-matrices is defined as P_A(x_0, . . . , x_r) := det(x_0 I + x_1 A_1 + . . . + x_r A_r). We show that if r ≥ 3 and A := (A_1, . . . , A_r) is an r-tuple of n imes n-matrices in general position, then up to conjugacy, there are only finitely many r-tuples A' := (A_1', dots, A_r') such that p_A = p_{A'}. Equivalently, the locus of determinantal hypersurfaces of degree n in P^r is irreducible of dimension (r-1)n^2 + 1.
The characteristic polynomial PA(x0,⋯,xr) of an r-tuple A:= (A1,⋯, Ar) of n×n-ma-trices is defined as PA(x0,⋯,xr):= det(x0I + x1A1 + ··· + xrAr). We show that if r ≥ 3 and A:= (A1,⋯, Ar) is an r-tuple of n × n-matrices in general position, then up to conjugacy, there are only finitely many r-tuples A′:= (A′1,⋯, A′r) such that pA = pA′. Equivalently, the locus of determinantal hypersurfaces of degree n in Pr is irreducible of dimension (r - 1)n2 + 1.
On the dimension of the locus of determinantal hypersurfaces
VISTOLI, ANGELO
2017
Abstract
The characteristic polynomial PA(x0,⋯,xr) of an r-tuple A:= (A1,⋯, Ar) of n×n-ma-trices is defined as PA(x0,⋯,xr):= det(x0I + x1A1 + ··· + xrAr). We show that if r ≥ 3 and A:= (A1,⋯, Ar) is an r-tuple of n × n-matrices in general position, then up to conjugacy, there are only finitely many r-tuples A′:= (A′1,⋯, A′r) such that pA = pA′. Equivalently, the locus of determinantal hypersurfaces of degree n in Pr is irreducible of dimension (r - 1)n2 + 1.File | Dimensione | Formato | |
---|---|---|---|
_usr_local_cms_cmb_Issues_v60n3_reichsteinB3296_reichsteinB3296.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
797.51 kB
Formato
Adobe PDF
|
797.51 kB | Adobe PDF | Richiedi una copia |
11384_67424_pr.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Creative Commons
Dimensione
257.97 kB
Formato
Adobe PDF
|
257.97 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.