Let M denote the space of probability measures on R^D endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced by Ambrosio, Gigli, and Savare'. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For D = 2d we then define a symplectic distribution on M in terms of this calcu- lus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper we emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of R^D .
Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems
PACINI, TOMMASO
2011
Abstract
Let M denote the space of probability measures on R^D endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced by Ambrosio, Gigli, and Savare'. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For D = 2d we then define a symplectic distribution on M in terms of this calcu- lus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper we emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of R^D .File | Dimensione | Formato | |
---|---|---|---|
S0065-9266-2010-00610-0.pdf
Accesso chiuso
Tipologia:
Altro materiale allegato
Licenza:
Non pubblico
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.