Let M denote the space of probability measures on R^D endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced by Ambrosio, Gigli, and Savare'. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For D = 2d we then define a symplectic distribution on M in terms of this calcu- lus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper we emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of R^D .

Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems

PACINI, TOMMASO
2011

Abstract

Let M denote the space of probability measures on R^D endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in M was introduced by Ambrosio, Gigli, and Savare'. In this paper we develop a calculus for the corresponding class of differential forms on M. In particular we prove an analogue of Green’s theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For D = 2d we then define a symplectic distribution on M in terms of this calcu- lus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper we emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of R^D .
File in questo prodotto:
File Dimensione Formato  
S0065-9266-2010-00610-0.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Non pubblico
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/6796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact