The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail. The software, which is interfaced with a powerful graphical user interface, includes different optimization algorithms, an extended error analysis, and a number of advanced features, the most remarkable ones concerning the choice of internal coordinates and the method of predicate observations. In particular, a new black-box scheme for defining automatically a suitable set of nonredundant internal coordinates of A1 symmetry in place of the customary Z-matrix has been designed and tested. Finally, the implementation of the method of the predicate observations is discussed and validated for a set of test molecules. As an original application, the method is employed for the determination of the semiexperimental structure for the most stable conformer of glycine.

Development and Implementation of Advanced Fitting Methods for the Calculation of Accurate Molecular Structures

MENDOLICCHIO, MARCO;PENOCCHIO, EMANUELE;LICARI, DANIELE;TASINATO, Nicola;BARONE, Vincenzo
2017

Abstract

The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of dynamical and environmental effects in tuning their overall behavior. For this purpose the so-called semiexperimental approach, based on a nonlinear least-squares fit of the moments of inertia associated with a set of available isotopologues, allows one to obtain very accurate results, without the unfavorable computational cost characterizing high-level quantum chemical methods. In the present work the MSR (Molecular Structure Refinement) software for the determination of equilibrium structures by means of the semiexperimental approach is presented, and its implementation is discussed in some detail. The software, which is interfaced with a powerful graphical user interface, includes different optimization algorithms, an extended error analysis, and a number of advanced features, the most remarkable ones concerning the choice of internal coordinates and the method of predicate observations. In particular, a new black-box scheme for defining automatically a suitable set of nonredundant internal coordinates of A1 symmetry in place of the customary Z-matrix has been designed and tested. Finally, the implementation of the method of the predicate observations is discussed and validated for a set of test molecules. As an original application, the method is employed for the determination of the semiexperimental structure for the most stable conformer of glycine.
2017
Settore CHIM/02 - Chimica Fisica
File in questo prodotto:
File Dimensione Formato  
acs.jctc.7b00279.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/67986
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact