In this paper we construct entire solutions to the phase field equation of Willmore type - Δ (- Δ u+ W′(u)) + W″(u) (- Δ u+ W′(u)) = 0 in the Euclidean plane, where W(u) is the standard double-well potential 14(1-u2)2. Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to ± 1 as x2→ ± ∞. These solutions give a counterexample to the counterpart of Gibbons’ conjecture for the fourth-order counterpart of the Allen–Cahn equation. We also study the x2-derivative of these solutions using the special structure of Willmore’s equation.

Periodic Solutions to a Cahn–Hilliard–Willmore Equation in the Plane

Andrea Malchiodi
;
2018

Abstract

In this paper we construct entire solutions to the phase field equation of Willmore type - Δ (- Δ u+ W′(u)) + W″(u) (- Δ u+ W′(u)) = 0 in the Euclidean plane, where W(u) is the standard double-well potential 14(1-u2)2. Such solutions have a non-trivial profile that shadows a Willmore planar curve, and converge uniformly to ± 1 as x2→ ± ∞. These solutions give a counterexample to the counterpart of Gibbons’ conjecture for the fourth-order counterpart of the Allen–Cahn equation. We also study the x2-derivative of these solutions using the special structure of Willmore’s equation.
2018
Settore MAT/05 - Analisi Matematica
Cahn-Hilliard equation; Willmore curves; Gibbons conjecture.
File in questo prodotto:
File Dimensione Formato  
MMR-ARMA.pdf

Accesso chiuso

Descrizione: MMR-ARMA
Tipologia: Published version
Licenza: Non pubblico
Dimensione 770.36 kB
Formato Adobe PDF
770.36 kB Adobe PDF   Richiedi una copia
MMR-ARMA-PP.pdf

accesso aperto

Descrizione: MMR-ARMA-PP
Tipologia: Accepted version (post-print)
Licenza: Creative Commons
Dimensione 559.2 kB
Formato Adobe PDF
559.2 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/68585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact