If $mu$ is a probability measure on the set of suitable weak solutions of the 3D Navier-Stokes equations, invariant for the time-shift, with finite mean dissipation rate, then at every time t the set of singular points is empty $mu$-a.s. The existence of a measure $mu$ with the previous properties is also proved; it may describe a turbulent asymptotic regime.

Statistically Stationary Solutions to the 3D Navier-Stokes Equations do not show Singularities

Flandoli, Franco;
2001

Abstract

If $mu$ is a probability measure on the set of suitable weak solutions of the 3D Navier-Stokes equations, invariant for the time-shift, with finite mean dissipation rate, then at every time t the set of singular points is empty $mu$-a.s. The existence of a measure $mu$ with the previous properties is also proved; it may describe a turbulent asymptotic regime.
2001
Navier-Stokes equations; suitable weak solutions; stationary solutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69138
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact