We investigate the Markov property and the continuity with respect to the initial conditions (strong Feller property) for the solutions to the Navier–Stokes equations forced by an additive noise. First, we prove, by means of an abstract selection principle, that there are Markov solutions to the Navier–Stokes equations. Due to the lack of continuity of solutions in the space of finite energy, the Markov property holds almost everywhere in time. Then, depending on the regularity of the noise, we prove that any Markov solution has the strong Feller property for regular initial conditions. We give also a few consequences of these facts, together with a new sufficient condition for well-posedness.

Markov selections for the 3D stochastic Navier-Stokes equations

Flandoli, Franco;
2008

Abstract

We investigate the Markov property and the continuity with respect to the initial conditions (strong Feller property) for the solutions to the Navier–Stokes equations forced by an additive noise. First, we prove, by means of an abstract selection principle, that there are Markov solutions to the Navier–Stokes equations. Due to the lack of continuity of solutions in the space of finite energy, the Markov property holds almost everywhere in time. Then, depending on the regularity of the noise, we prove that any Markov solution has the strong Feller property for regular initial conditions. We give also a few consequences of these facts, together with a new sufficient condition for well-posedness.
stochastic Navier–Stokes equations; martingale problem; Markov property; Markov selections; strong Feller property; well posedness
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11384/69139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 74
social impact