The strong existence and the pathwise uniqueness of solutions with L∞-vorticity of the 2D stochastic Euler equations are proved. The noise is multiplicative and it involves the first derivatives. A Lagrangian approach is implemented, where a stochastic flow solving a nonlinear flow equation is constructed. The stability under regularizations is also proved.

Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity

Flandoli, Franco;
2016

Abstract

The strong existence and the pathwise uniqueness of solutions with L∞-vorticity of the 2D stochastic Euler equations are proved. The noise is multiplicative and it involves the first derivatives. A Lagrangian approach is implemented, where a stochastic flow solving a nonlinear flow equation is constructed. The stability under regularizations is also proved.
2016
Settore MAT/06 - Probabilita' e Statistica Matematica
Settore MATH-03/B - Probabilità e statistica matematica
File in questo prodotto:
File Dimensione Formato  
s00205-015-0957-8.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 668.16 kB
Formato Adobe PDF
668.16 kB Adobe PDF   Richiedi una copia
1401.5938v2.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Non specificata
Dimensione 420.34 kB
Formato Adobe PDF
420.34 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 50
  • OpenAlex 68
social impact