We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327-1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.
Infinite root stacks and quasi-coherent sheaves on logarithmic schemes
Talpo, Mattia;Vistoli, Angelo
2018
Abstract
We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327-1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Talpo_et_al-2018-Proceedings_of_the_London_Mathematical_Society.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Richiedi una copia |
11384_69358.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
698.73 kB
Formato
Adobe PDF
|
698.73 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.