We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327-1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.

Infinite root stacks and quasi-coherent sheaves on logarithmic schemes

Talpo, Mattia;Vistoli, Angelo
2018

Abstract

We define and study infinite root stacks of fine and saturated logarithmic schemes, a limit version of the root stacks introduced by Niels Borne and the second author in Adv. Math. (231 (2012) 1327-1363). We show in particular that the infinite root stack determines the logarithmic structure and recovers the Kummer-flat topos of the logarithmic scheme. We also extend the correspondence between parabolic sheaves and quasi-coherent sheaves on root stacks to this new setting.
2018
Settore MAT/03 - Geometria
Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
Talpo_et_al-2018-Proceedings_of_the_London_Mathematical_Society.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Richiedi una copia
11384_69358.pdf

accesso aperto

Tipologia: Submitted version (pre-print)
Licenza: Solo Lettura
Dimensione 698.73 kB
Formato Adobe PDF
698.73 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact