We provide sufficient conditions for synchronization by noise, i.e. under these conditions we prove that weak random attractors for random dynamical systems consist of single random points. In the case of SDE with additive noise, these conditions are also essentially necessary. In addition, we provide sufficient conditions for the existence of a minimal weak point random attractor consisting of a single random point. As a result, synchronization by noise is proven for a large class of SDE with additive noise. In particular, we prove that the random attractor for an SDE with drift given by a (multidimensional) double-well potential and additive noise consists of a single random point. All examples treated in Tearne (Probab Theory Relat Fields 141(1–2):1–18, 2008) are also included.

Synchronization by noise

Flandoli, Franco;
2017

Abstract

We provide sufficient conditions for synchronization by noise, i.e. under these conditions we prove that weak random attractors for random dynamical systems consist of single random points. In the case of SDE with additive noise, these conditions are also essentially necessary. In addition, we provide sufficient conditions for the existence of a minimal weak point random attractor consisting of a single random point. As a result, synchronization by noise is proven for a large class of SDE with additive noise. In particular, we prove that the random attractor for an SDE with drift given by a (multidimensional) double-well potential and additive noise consists of a single random point. All examples treated in Tearne (Probab Theory Relat Fields 141(1–2):1–18, 2008) are also included.
2017
Lyapunov exponent; Random attractor; Random dynamical system; Statistical equilibrium; Stochastic differential equation; Synchronization;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69416
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact