The chemistry of superheavy elements (Z ⥠104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au<inf>7</inf>- and Au<inf>20</inf>-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au<inf>7</inf> (planar) and Au<inf>20</inf> (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au<inf>20</inf>-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.
Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study
Rampino, Sergio
;
2015
Abstract
The chemistry of superheavy elements (Z ⥠104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), AuI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.