Coupled cluster singles and doubles linear response (CCLR) calculations have been carried out for excitation energies and dipole transition strengths for the lowest excitations in LiH, CH+, and C4and the results compared with the results from a CI-like approach to equation of motion coupled cluster (EOMCC). The transition strengths are similar in the two approaches for single molecule calculations on small systems. However, the CCLR approach gives size-intensive dipole transition strengths, while title EOMCC formalism does not. Thus, EOMCC calculations can give unphysically dipole transition strengths, e.g., in EOMCC calculations on a sequence of noninteracting LiH systems we obtained a negative dipole strength for the lowest totally symmetric dipole allowed transition for 19 or more noninteracting LiH systems. The CCLR approach is shown to be a very attractive "black box" approach for the calculation of transition moments. © 1994 American Institute of Physics.

Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function

Koch, Henrik;
1994

Abstract

Coupled cluster singles and doubles linear response (CCLR) calculations have been carried out for excitation energies and dipole transition strengths for the lowest excitations in LiH, CH+, and C4and the results compared with the results from a CI-like approach to equation of motion coupled cluster (EOMCC). The transition strengths are similar in the two approaches for single molecule calculations on small systems. However, the CCLR approach gives size-intensive dipole transition strengths, while title EOMCC formalism does not. Thus, EOMCC calculations can give unphysically dipole transition strengths, e.g., in EOMCC calculations on a sequence of noninteracting LiH systems we obtained a negative dipole strength for the lowest totally symmetric dipole allowed transition for 19 or more noninteracting LiH systems. The CCLR approach is shown to be a very attractive "black box" approach for the calculation of transition moments. © 1994 American Institute of Physics.
1994
Physics and Astronomy (all); Physical and Theoretical Chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 207
  • ???jsp.display-item.citation.isi??? 210
social impact