We present a novel approach to the calculation of the Coulomb and exchange contributions to the total electronic energy in self consistent field and density functional theory. The numerical procedure is based on the Cholesky decomposition and involves decomposition of specific Hadamard product matrices that enter the energy expression. In this way, we determine an auxiliary basis and obtain a dramatic reduction in size as compared to the resolution of identity (RI) method. Although the auxiliary basis is determined from the energy expression, we have complete control of the errors in the gradient or Fock matrix. Another important advantage of this method specific Cholesky decomposition is that the exchange energy and Fock matrix can be evaluated with a linear scaling effort contrary to the RI method or standard Cholesky decomposition of the two-electron integral matrix. The methods presented show the same scaling properties as the so-called local density fitting methods, but with full error control. © 2008 American Institute of Physics.

Method specific Cholesky decomposition: Coulomb and exchange energies

Koch, Henrik
;
2008

Abstract

We present a novel approach to the calculation of the Coulomb and exchange contributions to the total electronic energy in self consistent field and density functional theory. The numerical procedure is based on the Cholesky decomposition and involves decomposition of specific Hadamard product matrices that enter the energy expression. In this way, we determine an auxiliary basis and obtain a dramatic reduction in size as compared to the resolution of identity (RI) method. Although the auxiliary basis is determined from the energy expression, we have complete control of the errors in the gradient or Fock matrix. Another important advantage of this method specific Cholesky decomposition is that the exchange energy and Fock matrix can be evaluated with a linear scaling effort contrary to the RI method or standard Cholesky decomposition of the two-electron integral matrix. The methods presented show the same scaling properties as the so-called local density fitting methods, but with full error control. © 2008 American Institute of Physics.
2008
Physics and Astronomy (all); Physical and Theoretical Chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/69803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 53
social impact