We report the first observation of a baryonic B-s(0) decay, B-s(0). p (Lambda) over barK(-), using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb(-1). The branching fraction is measured to be B(B-s(0) -> p (Lambda) over bar K-)+ B(B-s(0) -> p (Lambda) over bar K+) [5.46 +/- 0.61 +/- 0.57 +/- 0.50(B) +/- 0.32(f(s)/(d))] x 10(-6), where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the B-0 -> p (Lambda) over bar pi(-) decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of b-quark hadronization probabilities f(s)/f(d).
First Observation of a Baryonic B-s(0) Decay
Lusiani, A.;Morello, M. J.;
2017
Abstract
We report the first observation of a baryonic B-s(0) decay, B-s(0). p (Lambda) over barK(-), using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb(-1). The branching fraction is measured to be B(B-s(0) -> p (Lambda) over bar K-)+ B(B-s(0) -> p (Lambda) over bar K+) [5.46 +/- 0.61 +/- 0.57 +/- 0.50(B) +/- 0.32(f(s)/(d))] x 10(-6), where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the B-0 -> p (Lambda) over bar pi(-) decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of b-quark hadronization probabilities f(s)/f(d).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.