We report on a measurement of the D+ -meson production cross section as a function of transverse momentum (p(T)) in proton-antiproton (p (p) over bar) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb(-1) of integrated luminosity. We use D-broken vertical bar -> K- pi(broken vertical bar) pi(broken vertical bar) decays fully reconstructed in the central rapidity region broken vertical bar y broken vertical bar < 1 with transverse momentum down to 1.5 GeV/c, a range previously unexplored in p<(p)over bar> collisions. Inelastic p (p) over bar -scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K- pi(+) pi(+) mass distribution is used to identify the D+ signal, and the D+ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D+ signal of 2950 candidates corresponding to a total cross section sigma(D+), 1.5 < P-T < 14.5 GeV/c, vertical bar y vertical bar < 1) = 71.9 +/- 6.8 (stat) +/- 9.3 (syst) mu b.While the measured cross sections are consistent with theoretical estimates in each p(T) bin, the shape of the observed p(T) spectrum is softer than the expectation from quantum chromodynamics. The results are unique in p<(p)over bar> collisions and can improve the shape and uncertainties of future predictions.
Measurement of the D+-meson production cross section at low transverse momentum in p(p)over-bar collisions at root s=1.96 TeV
Morello, M. J.;
2017
Abstract
We report on a measurement of the D+ -meson production cross section as a function of transverse momentum (p(T)) in proton-antiproton (p (p) over bar) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb(-1) of integrated luminosity. We use D-broken vertical bar -> K- pi(broken vertical bar) pi(broken vertical bar) decays fully reconstructed in the central rapidity region broken vertical bar y broken vertical bar < 1 with transverse momentum down to 1.5 GeV/c, a range previously unexplored in p<(p)over bar> collisions. Inelastic p (p) over bar -scattering events are selected online using minimally biasing requirements followed by an optimized offline selection. The K- pi(+) pi(+) mass distribution is used to identify the D+ signal, and the D+ transverse impact-parameter distribution is used to separate prompt production, occurring directly in the hard-scattering process, from secondary production from b-hadron decays. We obtain a prompt D+ signal of 2950 candidates corresponding to a total cross section sigma(D+), 1.5 < P-T < 14.5 GeV/c, vertical bar y vertical bar < 1) = 71.9 +/- 6.8 (stat) +/- 9.3 (syst) mu b.While the measured cross sections are consistent with theoretical estimates in each p(T) bin, the shape of the observed p(T) spectrum is softer than the expectation from quantum chromodynamics. The results are unique in p<(p)over bar> collisions and can improve the shape and uncertainties of future predictions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.