The vertical spectrum of tetracyanoethylene was studied using coupled cluster theory. It was found that the lowest singlet-singlet transition, which corresponds to the excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) excitation, occurs at 5.16 eV in the gas phase and is lowered approximately 0.1 eV due to solvent effects in acetonitrile. A parallel study on the ethene spectrum showed the quality of the basis sets and methods used, by placing the V state 7.92 eV above the ground state and giving an energy for the 0-0 transition of 5.42 eV to be compared with the experimental value of 5.50 eV.
Coupled cluster calculations of the vertical excitation energies of tetracyanoethylene
Koch, Henrik
2003
Abstract
The vertical spectrum of tetracyanoethylene was studied using coupled cluster theory. It was found that the lowest singlet-singlet transition, which corresponds to the excitation from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) excitation, occurs at 5.16 eV in the gas phase and is lowered approximately 0.1 eV due to solvent effects in acetonitrile. A parallel study on the ethene spectrum showed the quality of the basis sets and methods used, by placing the V state 7.92 eV above the ground state and giving an energy for the 0-0 transition of 5.42 eV to be compared with the experimental value of 5.50 eV.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.