We present a computational methodology based on a polarizable Quantum Mechanical (QM)/Molecular Mechanics (MM) approach to accurately compute the Vibrational Optical Activity (VOA) spectra of chiral systems. This approach is applied for the calculation of Infrared (IR), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) spectra of aqueous solutions of (L)-methyl lactate and (S)-glycidol. Remarkable agreement between calculations and experiments is reported, showing the reliability and accuracy of the methodology, especially with respect to standard continuum solvation approaches.
We present a computational methodology based on a polarizable Quantum Mechanical (QM)/Molecular Mechanics (MM) approach to accurately compute the Vibrational Optical Activity (VOA) spectra of chiral systems. This approach is applied for the calculation of Infrared (IR), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) spectra of aqueous solutions of (l)-methyl lactate and (S)-glycidol. Remarkable agreement between calculations and experiments is reported, showing the reliability and accuracy of the methodology, especially with respect to standard continuum solvation approaches.
Effective Computational Route to Vibrational Optical Activity Spectra of Chiral Molecules in Aqueous Solution
Giovannini, Tommaso;Del Frate, Gianluca;Lafiosca, Piero;Cappelli, Chiara
2018
Abstract
We present a computational methodology based on a polarizable Quantum Mechanical (QM)/Molecular Mechanics (MM) approach to accurately compute the Vibrational Optical Activity (VOA) spectra of chiral systems. This approach is applied for the calculation of Infrared (IR), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) spectra of aqueous solutions of (l)-methyl lactate and (S)-glycidol. Remarkable agreement between calculations and experiments is reported, showing the reliability and accuracy of the methodology, especially with respect to standard continuum solvation approaches.File | Dimensione | Formato | |
---|---|---|---|
c8cp00487k.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Non pubblico
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Richiedi una copia |
draft_CC.pdf
accesso aperto
Tipologia:
Submitted version (pre-print)
Licenza:
Solo Lettura
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.