LCAT is activated by apoA-I to form cholesteryl ester. We combined two structures, phospholipase A2(PLA2) that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and bacteriophage tubulin PhuZ, as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtaposition of multiple structural motifs matching experimental data is compelling evidence for the general correctness of many features of the model: i ) The N-terminal 10 residues of the model, required for LCAT activity, extend the hydrophobic binding trough for the sn-2 chain 15-20 Å relative to PLA2. ii ) The topography of the trough places the ester bond of the sn-2 chain less than 5 Å from the hydroxyl of the catalytic nucleophile, S181. iii ) Aβ -hairpin resembling a lipase lid separates S181 from solvent. iv ) S181 interacts with three functionally critical residues: E149, that regulates sn-2 chain specifi city, and K128 and R147, whose mutations cause LCAT defi ciency. Because the model provides a novel explanation for the complicated thermodynamic problem of the transfer of hydrophobic substrates from HDL to the catalytic triad of LCAT, it is an important step toward understanding the antiatherogenic role of HDL in reverse cholesterol transport. -Segrest, J. P., M. K. Jones, A. Catte, and S. P. Thirumuruganandham. A robust all-atom model for LCAT generated by homology modeling.

A robust all-atom model for LCAT generated by homology modeling

Catte, Andrea
Writing – Review & Editing
;
2015

Abstract

LCAT is activated by apoA-I to form cholesteryl ester. We combined two structures, phospholipase A2(PLA2) that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and bacteriophage tubulin PhuZ, as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtaposition of multiple structural motifs matching experimental data is compelling evidence for the general correctness of many features of the model: i ) The N-terminal 10 residues of the model, required for LCAT activity, extend the hydrophobic binding trough for the sn-2 chain 15-20 Å relative to PLA2. ii ) The topography of the trough places the ester bond of the sn-2 chain less than 5 Å from the hydroxyl of the catalytic nucleophile, S181. iii ) Aβ -hairpin resembling a lipase lid separates S181 from solvent. iv ) S181 interacts with three functionally critical residues: E149, that regulates sn-2 chain specifi city, and K128 and R147, whose mutations cause LCAT defi ciency. Because the model provides a novel explanation for the complicated thermodynamic problem of the transfer of hydrophobic substrates from HDL to the catalytic triad of LCAT, it is an important step toward understanding the antiatherogenic role of HDL in reverse cholesterol transport. -Segrest, J. P., M. K. Jones, A. Catte, and S. P. Thirumuruganandham. A robust all-atom model for LCAT generated by homology modeling.
2015
Settore CHIM/02 - Chimica Fisica
Apolipoproteins; Cholesterol/efflux; High density lipoprotein; Lecithin:cholesterol acyltransferase; Phospholipases/A2; Biological Transport, Active; Cholesterol; Humans; Lipoproteins, HDL; Phosphatidylcholine-Sterol O-Acyltransferase; Protein Structure, Secondary; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Models, Molecular; Biochemistry; Endocrinology; Cell Biology
File in questo prodotto:
File Dimensione Formato  
segrest_15.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Published version
Licenza: Creative Commons
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/73150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact