Following the identification of the calcineurin B-like interacting protein kinase 15 (CIPK15), which is a regulator of starch degradation, the low O2 signal elicited during rice germination under submergence has been linked to the sugar sensing cascade and calcium (Ca2+) signalling. CIPK proteins are downstream effectors of calcineurin B-like proteins (CBLs), which act as Ca2+ sensors, whose role under low O2 has yet to be established. In the present study we describe CBL4 as a putative CIPK15 partner, transcriptionally activated under low O2 in rice coleoptiles. The transactivation of the rice embryo CBL4 transcript and CBL4 promoter was influenced by the Ca2+ blocker ruthenium red (RR). The bimolecular fluorescence complementation (BiFC) assay associated to fluorescence recovery after photobleaching (FRAP) analysis confirmed that CBL4 interacts with CIPK15. The CBL4-CIPK15 complex is localised in the cytoplasm and the plasma-membrane. Experiments in protoplasts showed a dampening of μ-amylase 3 (RAMY3D) expression after CBL4 silencing by artificial miRNA. Our results suggest that under low O2, the Ca2+ sensor CBL4 interacts with CIPK15 to regulate RAMY3D expression in a Ca2+-dependent manner.
A calcineurin B-like protein participates in low oxygen signalling in rice
Cardarelli, Francesco;Perata, Pierdomenico;
2017
Abstract
Following the identification of the calcineurin B-like interacting protein kinase 15 (CIPK15), which is a regulator of starch degradation, the low O2 signal elicited during rice germination under submergence has been linked to the sugar sensing cascade and calcium (Ca2+) signalling. CIPK proteins are downstream effectors of calcineurin B-like proteins (CBLs), which act as Ca2+ sensors, whose role under low O2 has yet to be established. In the present study we describe CBL4 as a putative CIPK15 partner, transcriptionally activated under low O2 in rice coleoptiles. The transactivation of the rice embryo CBL4 transcript and CBL4 promoter was influenced by the Ca2+ blocker ruthenium red (RR). The bimolecular fluorescence complementation (BiFC) assay associated to fluorescence recovery after photobleaching (FRAP) analysis confirmed that CBL4 interacts with CIPK15. The CBL4-CIPK15 complex is localised in the cytoplasm and the plasma-membrane. Experiments in protoplasts showed a dampening of μ-amylase 3 (RAMY3D) expression after CBL4 silencing by artificial miRNA. Our results suggest that under low O2, the Ca2+ sensor CBL4 interacts with CIPK15 to regulate RAMY3D expression in a Ca2+-dependent manner.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.