Here we address the impact nuclear architecture has on molecular flow within the mitotic nucleus of live cells as compared to interphase by the pair correlation function method. The mitotic chromatin is found to allow delayed but continuous molecular flow of EGFP in and out of a high chromatin density region, which, by pair correlation function analysis, is shown as a characteristic arc shape that appears upon entry and exit. This is in contrast to interphase chromatin, which regulates flow between different density chromatin regions by means of a mechanism which turns on and off intermittently, generating discrete bursts of EGFP. We show that the interphase bursts are maintained by metabolic energy, whereas the mitotic mechanism of regulation responsible for the arc is not sensitive to ATP depletion. These two distinct routes of molecular flow were concomitantly measured in the Caenorhabditis elegans germ line, which indicates a conservation of mechanism on a scale more widespread than cell type or organism. © 2011 by the Biophysical Society.

The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis

Cardarelli, Francesco;Gratton, Enrico
2011

Abstract

Here we address the impact nuclear architecture has on molecular flow within the mitotic nucleus of live cells as compared to interphase by the pair correlation function method. The mitotic chromatin is found to allow delayed but continuous molecular flow of EGFP in and out of a high chromatin density region, which, by pair correlation function analysis, is shown as a characteristic arc shape that appears upon entry and exit. This is in contrast to interphase chromatin, which regulates flow between different density chromatin regions by means of a mechanism which turns on and off intermittently, generating discrete bursts of EGFP. We show that the interphase bursts are maintained by metabolic energy, whereas the mitotic mechanism of regulation responsible for the arc is not sensitive to ATP depletion. These two distinct routes of molecular flow were concomitantly measured in the Caenorhabditis elegans germ line, which indicates a conservation of mechanism on a scale more widespread than cell type or organism. © 2011 by the Biophysical Society.
2011
Animals; Biophysics; CHO Cells; Caenorhabditis elegans; Chromatin; Cricetinae; Cricetulus; Diffusion; Germ Cells; Green Fluorescent Proteins; Protein Transport; Interphase; Mitosis; Biophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/73610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact