Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space. Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the maximum average teleportation fidelity achievable with any finite entanglement and for any realistically finite variance of the input distribution.

Optimal Continuous Variable Quantum Teleportation with Limited Resources

Mari, Andrea;Giovannetti, Vittorio;Adesso, Gerardo
2017

Abstract

Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space. Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the maximum average teleportation fidelity achievable with any finite entanglement and for any realistically finite variance of the input distribution.
2017
Physics and Astronomy (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/73917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact