A class of adaptive decoders (ADs) for coherent-state sequences is studied, including in particular the most common technology for optical-signal processing, e.g., interferometers, coherent displacements, and photon-counting detectors. More generally we consider ADs comprising adaptive procedures based on passive multimode Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD's optimal information transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered class of ADs.
Capacity of coherent-state adaptive decoders with interferometry and single-mode detectors
ROSATI, Matteo;Mari, Andrea;Giovannetti, Vittorio
2017
Abstract
A class of adaptive decoders (ADs) for coherent-state sequences is studied, including in particular the most common technology for optical-signal processing, e.g., interferometers, coherent displacements, and photon-counting detectors. More generally we consider ADs comprising adaptive procedures based on passive multimode Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD's optimal information transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered class of ADs.| File | Dimensione | Formato | |
|---|---|---|---|
|
1703.05701v3.pdf
Accesso chiuso
Tipologia:
Published version
Licenza:
Tutti i diritti riservati
Dimensione
401 kB
Formato
Adobe PDF
|
401 kB | Adobe PDF | Richiedi una copia |
|
PhysRevA.96.012317.pdf
accesso aperto
Tipologia:
Accepted version (post-print)
Licenza:
Non specificata
Dimensione
265.58 kB
Formato
Adobe PDF
|
265.58 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



