A class of adaptive decoders (ADs) for coherent-state sequences is studied, including in particular the most common technology for optical-signal processing, e.g., interferometers, coherent displacements, and photon-counting detectors. More generally we consider ADs comprising adaptive procedures based on passive multimode Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD's optimal information transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered class of ADs.

Capacity of coherent-state adaptive decoders with interferometry and single-mode detectors

ROSATI, Matteo;Mari, Andrea;Giovannetti, Vittorio
2017

Abstract

A class of adaptive decoders (ADs) for coherent-state sequences is studied, including in particular the most common technology for optical-signal processing, e.g., interferometers, coherent displacements, and photon-counting detectors. More generally we consider ADs comprising adaptive procedures based on passive multimode Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD's optimal information transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered class of ADs.
2017
Atomic and Molecular Physics, and Optics
File in questo prodotto:
File Dimensione Formato  
1703.05701v3.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Tutti i diritti riservati
Dimensione 401 kB
Formato Adobe PDF
401 kB Adobe PDF   Richiedi una copia
PhysRevA.96.012317.pdf

accesso aperto

Tipologia: Accepted version (post-print)
Licenza: Non specificata
Dimensione 265.58 kB
Formato Adobe PDF
265.58 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/73928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex 19
social impact