In this paper, we extend the DC calculus introduced by Perelman on finite dimensional Alexandrov spaces with curvature bounded below. Among other things, our results allow us to define the Hessian and the Laplacian of DC functions (including distance functions as a particular instance) as a measure-valued tensor and a Radon measure respectively. We show that these objects share various properties with their analogues on smooth Riemannian manifolds.

DC calculus

Ambrosio, Luigi
;
2018

Abstract

In this paper, we extend the DC calculus introduced by Perelman on finite dimensional Alexandrov spaces with curvature bounded below. Among other things, our results allow us to define the Hessian and the Laplacian of DC functions (including distance functions as a particular instance) as a measure-valued tensor and a Radon measure respectively. We show that these objects share various properties with their analogues on smooth Riemannian manifolds.
2018
Settore MAT/05 - Analisi Matematica
Mathematics (all)
File in questo prodotto:
File Dimensione Formato  
DC_offprint.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Richiedi una copia
DC2.10_last.pdf

Open Access dal 08/10/2018

Descrizione: Post print
Tipologia: Accepted version (post-print)
Licenza: Solo Lettura
Dimensione 592.52 kB
Formato Adobe PDF
592.52 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/74088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact