The spin-orbit interaction strength for electrons in III-V semiconductor heterojunctions and the corresponding in-plane anisotropy are theoretically studied, considering Rashba and Dresselhaus contributions. Starting from a variational solution of Kane's effective Hamiltonian for the Rashba-split subbands, the total spin-orbit splitting at the Fermi level of the two-dimensional electron gas in III-V heterojunctions is calculated analytically, as a function of the electron density and wave-vector direction, by adding the Dresselhaus contribution within quasidegenerate first-order perturbation theory. Available GaAs and InGaAs experimental data are discussed. Effects of the barrier penetration are identified, and the spin-orbit anisotropy is shown to be determined by more than one parameter, even in the small-k limit, contrary to the commonly used alpha/beta (where alpha is the Rashba and beta the Dresselhaus interaction) single-parameter picture. DOI: 10.1103/PhysRevB.87.081304
Titolo: | Spin-orbit interaction strength and anisotropy in III-V semiconductor heterojunctions | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1103/PhysRevB.87.081304 | |
Parole Chiave: | spin orbit coupling; spintronic; Rashba effect | |
Handle: | http://hdl.handle.net/11384/7442 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |