In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called ‘‘Hurwitz problem’’, asking for a ‘‘simple’’ description of the combinatorial data which can be so realized.

Number Theory — On the existence of covers of P1associated to certain permutations

Zannier, Umberto
2018

Abstract

In this short note we prove the impossibility of realizing finite topological covers of the Riemann sphere minus three points, associated to certain explicit combinatorial (permutation) data. This comes from a question of M. Zieve and falls in the framework of the so-called ‘‘Hurwitz problem’’, asking for a ‘‘simple’’ description of the combinatorial data which can be so realized.
2018
Branching; Covers (of curves); Permutations; Mathematics (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/74909
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact