We show, under some natural conditions, that the set of abelian (and thus also cyclotomic) multiplicatively dependent points on an irreducible curve over a number field is a finite union of preimages of roots of unity by a certain finite set of primitive characters from Gmn to Gm restricted to the curve, and a finite set. We also introduce the notion of primitive multiplicative dependence and obtain a finiteness result for primitively multiplicatively dependent points defined over a so-called Bogomolov extension of a number field.

On abelian multiplicatively dependent points on a curve in a torus

Zannier, Umberto
2018

Abstract

We show, under some natural conditions, that the set of abelian (and thus also cyclotomic) multiplicatively dependent points on an irreducible curve over a number field is a finite union of preimages of roots of unity by a certain finite set of primitive characters from Gmn to Gm restricted to the curve, and a finite set. We also introduce the notion of primitive multiplicative dependence and obtain a finiteness result for primitively multiplicatively dependent points defined over a so-called Bogomolov extension of a number field.
2018
Mathematics (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/74910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact