We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear Multilinear Algebra, 1 (1973), pp. 163-171]. Our algorithms are based on Gaussian quadrature and Golub-Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiveness and efficiency of our techniques in computing generalized matrix functions arising in the analysis of networks.

Computation of generalized matrix functions

Benzi, Michele;
2016

Abstract

We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear Multilinear Algebra, 1 (1973), pp. 163-171]. Our algorithms are based on Gaussian quadrature and Golub-Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiveness and efficiency of our techniques in computing generalized matrix functions arising in the analysis of networks.
2016
Settore MAT/08 - Analisi Numerica
Gauss quadrature; Generalized matrix functions; Golub-Kahan bidiagonalization; Network communicability; Analysis
File in questo prodotto:
File Dimensione Formato  
ABF16.pdf

accesso aperto

Tipologia: Published version
Licenza: Solo Lettura
Dimensione 513.08 kB
Formato Adobe PDF
513.08 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact