Let A be a symmetric matrix and let f be a smooth function defined on an interval containing the spectrum of A. Generalizing a well-known result of Demko, Moss and Smith on the decay of the inverse we show that when A is banded, the entries of f(A) are bounded in an exponentially decaying manner away from the main diagonal. Bounds obtained by representing the entries of f(A) in terms of Riemann-Stieltjes integrals and by approximating such integrals by Gaussian quadrature rules are also considered. Applications of these bounds to preconditioning are suggested and illustrated by a few numerical examples.
Bounds for the entries of matrix functions with applications to preconditioning
Benzi, Michele;
1999
Abstract
Let A be a symmetric matrix and let f be a smooth function defined on an interval containing the spectrum of A. Generalizing a well-known result of Demko, Moss and Smith on the decay of the inverse we show that when A is banded, the entries of f(A) are bounded in an exponentially decaying manner away from the main diagonal. Bounds obtained by representing the entries of f(A) in terms of Riemann-Stieltjes integrals and by approximating such integrals by Gaussian quadrature rules are also considered. Applications of these bounds to preconditioning are suggested and illustrated by a few numerical examples.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.