We investigate the solution of linear systems of saddle point type with an indefinite (1, 1) block by preconditioned iterative methods. Our main focus is on block matrices arising from eigenvalue problems in incompressible fluid dynamics. A block triangular preconditioner based on an augmented Lagrangian formulation is shown to result in fast convergence of the GMRES iteration for a wide range of problem and algorithm parameters. Some theoretical estimates for the eigenvalues of the preconditioned matrices are given. Inexact variants of the preconditioner are also considered.

Block preconditioning for saddle point systems with indefinite (1, 1) block

Benzi, Michele;
2007

Abstract

We investigate the solution of linear systems of saddle point type with an indefinite (1, 1) block by preconditioned iterative methods. Our main focus is on block matrices arising from eigenvalue problems in incompressible fluid dynamics. A block triangular preconditioner based on an augmented Lagrangian formulation is shown to result in fast convergence of the GMRES iteration for a wide range of problem and algorithm parameters. Some theoretical estimates for the eigenvalues of the preconditioned matrices are given. Inexact variants of the preconditioner are also considered.
2007
Augmented Lagrangian; Incompressible flow; Krylov subspace methods; Preconditioning; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computational Theory and Mathematics; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
  • OpenAlex ND
social impact