We investigate the solution of linear systems of saddle point type with an indefinite (1, 1) block by preconditioned iterative methods. Our main focus is on block matrices arising from eigenvalue problems in incompressible fluid dynamics. A block triangular preconditioner based on an augmented Lagrangian formulation is shown to result in fast convergence of the GMRES iteration for a wide range of problem and algorithm parameters. Some theoretical estimates for the eigenvalues of the preconditioned matrices are given. Inexact variants of the preconditioner are also considered.
Block preconditioning for saddle point systems with indefinite (1, 1) block
Benzi, Michele;
2007
Abstract
We investigate the solution of linear systems of saddle point type with an indefinite (1, 1) block by preconditioned iterative methods. Our main focus is on block matrices arising from eigenvalue problems in incompressible fluid dynamics. A block triangular preconditioner based on an augmented Lagrangian formulation is shown to result in fast convergence of the GMRES iteration for a wide range of problem and algorithm parameters. Some theoretical estimates for the eigenvalues of the preconditioned matrices are given. Inexact variants of the preconditioner are also considered.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.