We analyze two types of block preconditioners for a class of saddle point problems arising from the modeling of liquid crystal directors using finite elements. Spectral properties of the preconditioned matrices are investigated, and numerical experiments are performed to assess the behavior of preconditioned iterations using both exact and inexact versions of the preconditioners.

Block preconditioners for saddle point systems arising from liquid crystal directors modeling

Benzi, Michele
2018

Abstract

We analyze two types of block preconditioners for a class of saddle point problems arising from the modeling of liquid crystal directors using finite elements. Spectral properties of the preconditioned matrices are investigated, and numerical experiments are performed to assess the behavior of preconditioned iterations using both exact and inexact versions of the preconditioners.
2018
Settore MAT/08 - Analisi Numerica
Krylov subspace methods; Liquid crystals; Preconditioning; Saddle point problems; Algebra and Number Theory; Computational Mathematics
File in questo prodotto:
File Dimensione Formato  
Beik-Benzi2018_Article_BlockPreconditionersForSaddleP.pdf

Accesso chiuso

Tipologia: Published version
Licenza: Non pubblico
Dimensione 758.75 kB
Formato Adobe PDF
758.75 kB Adobe PDF   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11384/75268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
  • OpenAlex ND
social impact