We study spectral properties of a class of block 2 × 2 matrices that arise in the solution of saddle point problems. These matrices are obtained by a sign change in the second block equation of the symmetric saddle point linear system. We give conditions for having a (positive) real spectrum and for ensuring diagonalizability of the matrix. In particular, we show that these properties hold for the discrete Stokes operator, and we discuss the implications of our characterization for augmented Lagrangian formulations, for Krylov subspace solvers and for certain types of preconditioners.
On the eigenvalues of a class of saddle point matrices
Benzi, Michele;
2006
Abstract
We study spectral properties of a class of block 2 × 2 matrices that arise in the solution of saddle point problems. These matrices are obtained by a sign change in the second block equation of the symmetric saddle point linear system. We give conditions for having a (positive) real spectrum and for ensuring diagonalizability of the matrix. In particular, we show that these properties hold for the discrete Stokes operator, and we discuss the implications of our characterization for augmented Lagrangian formulations, for Krylov subspace solvers and for certain types of preconditioners.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.